If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.2q+q^2=0.64
We move all terms to the left:
1.2q+q^2-(0.64)=0
We add all the numbers together, and all the variables
q^2+1.2q-0.64=0
a = 1; b = 1.2; c = -0.64;
Δ = b2-4ac
Δ = 1.22-4·1·(-0.64)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.2)-2}{2*1}=\frac{-3.2}{2} =-1+1/1.6666666666667 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.2)+2}{2*1}=\frac{0.8}{2} =0.8/2 $
| 12.5x=28 | | 12.5x=28 | | 41=-7-6x | | 41=-7-6x | | -5e-3=27 | | -5e-3=27 | | -5e-3=27 | | -5e-3=27 | | -5e-3=27 | | -5e-3=27 | | F(x)=7x-11 | | 41/2=-1/3t+61/2 | | -18y-32=22 | | -10m=7m+9 | | 10k+4k=14k | | -3z=-3z+9 | | 30x=560 | | x2-12x+4=0 | | 24x=540 | | 18=2(v+6)-5v | | 18=2(v+6)-5v | | 18=2(v+6)-5v | | 24x=540 | | 24x=540 | | 24x=540 | | 24x=540 | | 24x=540 | | 24x=540 | | 24x=540 | | 24x=540 | | 24x=540 | | 24x=540 |